

++SYSTEMS

Mittwoch 22. März 2022 Sprecher: Benjamin Kammereck

Best-Practice: Radardaten für die 2D Oberflächenberechnung

Ungleichmäßige Beregnung in GeoCPM

Was braucht man für den Prozess der Datenübernahme?

Aquazis als Messdatenmanagementsystem (MDMS)

Webinar Reihe "Vom Radar zum Simulationsergebnis": https://wiki.tandler.com/index.php?title=Einbinden_von_Radardaten

tandler•com

Radardaten – Warum ?

Allgemeine Idee: detaillierte Radardaten sollen für die Simulation herangezogen werden

Besonderheiten der Radardaten:

Flächenbasierter Niederschlag

- Zeitliche Variation
- Räumliche Variation

Vor allem bei Starkregen:

- Starke räumliche Heterogenität
- Stichwort "Starkregenzellen"
- Extreme punktuelle Belastung auf kurzer Zeit

Hinweise zur Berechnung und Erstellung von Starkregengefahrenkarten
→ Für den Modellinput sind Radolan Daten zu verwenden!

++SYSTEMS

Radolan & Radklim

Was sind eigentlich diese Radolan & Radklim Daten...?

Unterschiedliche Datenpacket für Radardaten:

Radolan liegen für die letzten 2 Tage vor

- Radolan RW: Niederschlagsstundensummen (RW)
- Radolan RY: 5-Minuten-Niederschlagsraten (YW)

Radklim liegen für 2001 bis 2020

Re-prozessierten Radarniederschlagsdaten aus der DWD-Radarklimatologie (RADKLIM) in 5 min

- RW (Niederschlagsstundensummen)
- RY (5-Minuten)

Die Daten liegen auf einem deutschlandweiten Raster mit einer Gitterweite von 1 km x 1 km in *polarstereographischer Projektion* vor

Daten sind OpenSource und können jederzeit von Ihnen heruntergeladen werden (https://opendata.dwd.de/climate_environment/CDC/help/landing_pages/doi_landingpage_RADKLIM_RW_V2017.002-de.html)

→ Extrem hohe Datenmengen:

- Dateninterpretation
- Datenaufbereitung notwendig

tandler•com

Fallbeispiel: Einzugsgebiet Gleißenbach

Workflow in Aquazis

1. Einrichten des Projektes: Aktueller Kartenausschnitt suchen & definieren

2. DWD-Stammdaten einrichten

3. Import der Rasterdaten

4. Visuelle Überprüfung der geladenen Daten!

tandler•com

Workflow in **++SYSTEMS**

1. Verbinden mit dem aktuellen Aquazis Projekt

Neu..

Ändern

Versetze

Löschen Alle löscher

Markieren

Einstellunger

Neu (digitalisieren)

2. Übernahme der Messstellen

3. Bereinigen der Messstellen

- 4. Erstellen von Regenmessstationen aus Messstellen
- 5. Übernahme der Regenmessstationen in den Gebietsniederschlag

++SYSTEMS

tandler•com

Workflow in **++SYSTEMS**

- 6. Ubergabe der Regenmessstation auf die Partition
 - Rasterverfahren

Jedes Polygon bekommt abhängig von seiner Lage

im fiktiven Raster anteilig verschiedene Messstellen zugewiesen

Thiesen-Polygon-Verfahren:

Jedem Polygon wird nach dem ermittelten Schwerpu Messstelle zugewiesen

- 7. Übernahme der Daten aus der Partition auf das DGM
- 8. Kontrolle auf den Dreiecken
- 9. Start der Berechnung

Auswahl aufheben Ausblenden			
Bearbeiten Geländemodell Geländeverlauf anzeigen	> >		
Partitionsdaten	>	Oberflächendaten aus Partition übernehmen	
Bearbeiten Dreiecke	>	Partition aus DGM erstellen	>
Triangulierung und Ausdünnen	>		
Knoten, Quellen und Bruchkanten	>		
Berechnung Berechnungsergebnisse anzeigen Statistik	>		
Import	>	Anschlussleitung	
Export	>		
Konvertieren	>		
Koordinatentransformation	>		

Ergebnis in GeoCPM für das Einzugsgebiet

Webinare Frühjahr 2022

Aktuelle Webinare unter www.tandler.com

 DWA A102 – Praxisbeispiel Schmutzfracht nach der neuen A102
 5. April 2021

 DWA A102 – 2D Oberflächenberechnung – Bringen genauere Daten auch signifikant bessere Ergebnisse ? (Ausdünnung der Geländemodelle) 03. Mai 2021

