

Leitfaden Starkregen / Risikomanagement BW (LUBW)

Webinar 29.05.2019, 10:00 Uhr

IT services for water innovation

tandler.com GmbH | Am Griesberg 25-27 | D-84172 Buch am Erlbach | Tel. +49 8709 940-47 | andreas.hofmann@tandler.com

tandler•com

++SYSTEMS und der "Leitfaden Starkregen" des LUBW

tandler•com

++SYSTEMS

tandler•com

Modellierung und Beregnung von Häusern

- Geländemodell (DGM): Häuser werden nicht speziell behandelt, da nicht vorhanden.
- Oberflächenmodell (DOM): Häuser mit ihren "tatsächlichen" Geometrien modellieren: sehr aufwändig!
- ++SYSTEMS Ansatz: Modellierung mit Bruchkanten
 - Gute Abbildung der Wirklichkeit bei moderatem Modellierungsaufwand => empfohlen
 - Probleme wenn Häuser direkt beregnet werden:
 - Instabilitäten
 - Wasserstände IN Häusern
 - Abhilfe durch die Annahme: auf ein "Haus" fallender Regen wird flächengewichtet gleichmäßig auf angrenzende Dreiecke verteilt: "Randverteilung"
 - Die Umsetzung dieser Annahme ist in ++SYSTEMS auf verschiedene Arten möglich:
 - Permanent (für OAK Daten)
 - Transient, nur für die Berechnung (für OAK Daten und Regenkurven)

++SYSTEMS

tandler•com

- HydTERRAIN in FileGDB: proprietäres ESRI Format: kein direkter Export
- FileGDB Export manuell:
 - Punkte als SHAPE exportieren

- HydTERRAIN in FileGDB: proprietäres ESRI Format: kein direkter Export
- FileGDB Export manuell:
 - Punkte als SHAPE exportieren
 - Alle relevanten Bruchkanten als SHAPE exportieren

++SYSTEMS

tandler•com

- HydTERRAIN in FileGDB: proprietäres ESRI Format: kein direkter Export
- FileGDB Export manuell:
 - Punkte als SHAPE exportieren
 - Alle relevanten Bruchkanten als SHAPE exportieren
 - Alle entstandenen SHAPE Dateien nacheinander in FileGDB integrieren ______

tandler•com

- HydTERRAIN in FileGDB: proprietäres ESRI Format: kein direkter Export
- FileGDB Export manuell:
 - Punkte als SHAPE exportieren
 - Alle relevanten Bruchkanten als SHAPE exportieren
 - Alle entstandenen SHAPE Dateien nacheinander in FileGDB integrieren
- FileGDB Export direkt:

tandler•com

++SYSTEMS

tandler•com

Risikoobjekte - Vorbereitungen

- Abbilden Risikoobjekte als "Schächte" / Knoten
 - Manuelles Setzen der Schächte
 - Attribut "*Risikoobjekt* =1" muss gesetzt werden
 - Position der Schächte ergibt Koordinaten des Objektes
 - Ausdehnung des Risikoobjektes
 - Punktförmig (keine weiteren Angaben)
 - Attribut "*Suchradius = x*": Kreisförmig um Mittelpunkt mit x m Radius
 - Schachtumrisse möglich (aber vom LUBW nicht akzeptiert)
 - Über das freie Attribut "*Minimaler Wasserstand=y*" (y in Metern) kann der minimal zu berücksichtigende Wasserstand angegeben werden.
 - Setzen weiterer relevanter ATTRIBUTE (siehe Liste Leitfaden Anhang 1c): z.B. RIOBJART, ID, AGS, WSP_HQ10, CHRKTR_UGEF, CHRKTR_SCHAPO, Bild1, Bild2, Bild3
- Vorbereiten der einzelnen Lastfälle in unterschiedlichen Geländemodellen:
 - Die Geländemodelle müssen die Präfixe AUS_U, AUS_V, SEL_U, SEL_V und EXT_V tragen, der restliche Teil des Namens ist nicht relevant. (SEL: selten, AUS: aussergewöhnlich, EXT: extrem; U: unverschlammt, V: verschlammt – U: optional, V: gefordert)
 - Die Geländemodelle müssen **berechnet** sein (also **Wasserstände** enthalten).

Risikoobjekte – Analyse der DGM

- Nach Anwählen der Exportfunktion wird eine Analyse der Geländemodelle durchgeführt:
 - Die Geländemodelle müssen berechnet sein (also Wasserstände enthalten).
 - Aus den entsprechenden Geländemodellen werden die Überflutungstiefen ermittelt (mittlere maximale GeoCPM Wasserstände) und folgende Attribute geschrieben: *UT_AUS_U, UT_AUS_V, UT_EXT_V, UT_SEL_U, UT_SEL_V.* Die Werte werden flächengewichtet über die Dreiecke mit einem Wasserstand über "Minimaler Wasserstand" gemittelt.
 - Genauso werden die mittleren Geländehöhen (m ü. NN, flächengewichtet über alle dem Risikoobjekt zugeordneten Dreiecke gemittelt) berechnet und im Attribut GELAENDE abgelegt.

Risikoobjekte - Export

- Nach Ende der Analyse wird der Anwender aufgefordert, einen Shape Dateinamen anzugeben (auch im FileGDB Fall wird zunächst ein Shape Export durchgeführt)
- Nach der Auswahl des Shape-Dateinamens, erscheit der gewohnte Shape-Export Dialog. Hier können (direkt oder über eine Eigenschaftsliste), die Attribute UT_AUS_U, UT_AUS_V, UT_EXT_V, UT_SEL_U, UT_SEL_V und GELAENDE mit den gewünschten Nachkommastellen (nicht als Text), sowie alle anderen Attribute gemäß Anhang 1c des Leitfadens angewählt werden.
- Wurde die Option "als SHAPE" gewählt, ist der Export jetzt beendet.
- Wurde die Option "als FileGDB / in FileGDB integrieren" gewählt, muss jetzt ein Verzeichnis für den FileGDB Export ausgewählt werden.
 - Wird ein **vorhandenes FileGDB** ausgewählt (Endung des Verzeichnisses ".gdb") wird in dieses exportiert,
 - ansonsten wird ein neues FileGDB im gewählten Verzeichnis angelegt und die Shape Exports werden eingespielt.

++SYSTEMS

tandler•com

Vielen Dank für Ihre Aufmerksamkeit!

tandler•com